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Abstract. A transformation method has been applied to the exactly solvable Hulthen problem to generate
a hierarchy of exactly solved quantum systems in any chosen dimension. The generated quantum systems
are, in general, energy-dependent with a single normalized eigenfunction, as the Hulthen potential is a
non-powerlaw potential. A method has been devised to convert a subset of the generated quantum systems
with energy-dependent potentials to a single normal system with an energy-independent potential that
behaves like a potential qualitatively similar to the Poschl-Teller potential. A second-order application
of the transformation method on the Hulthen system produces another Sturmian quantum system and
a different method is given to regroup them into a normal quantum system which resembles the Morse
potential. Existence of normalizable eigenfunctions for these systems are found to be dependent on the
local and asymptotic behaviour of the transformation function.

PACS. 03.65.Ge Solutions of wave equations: bound states

1 Introduction

Quantum mechanics owes its enormous success to its
widespread applications to different physical microsys-
tems. The success in obtaining information about the mi-
crosystems largely relied on the various approximation
schemes such as perturbation theory, variational tech-
nique, WKB method etc. This is necessitated as the po-
tential that governs a given quantum system (QS) more
often than not, does not facilitate exact solution of the
Schrödinger equation. However, for accuracy and ease
in analysis within the framework of an approximation
schemes it is necessary that an exactly solvable potential
may be had which differs from the given potential by as
little as possible. This warrants acquisition of as many ex-
actly solvable potentials as possible. Till a decade or two
ago the list of exactly solvable potentials was quite meagre.
Different authors have reported various solvable potentials
some of which with appended conditions. These are quasi-
exactly solvable QS [1–5], conditionally exactly solvable
QS [6,7] and conditionally quasi-exactly solvable QS [8].
Super symmetric (SUSY) quantum mechanics can also be
utilized to generate isospectral solvable potentials [9]. In
order to increase this set of exactly solvable potentials, one
of the present authors [10] has devised a transformation
scheme to generate new exactly solvable potentials from
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already known non-relativistic exact solutions of QS. The
method is based on a transformation called the extended
transformation (ET) that includes a co-ordinate trans-
formation (CT) followed by a functional transformation
(FT) and a set of plausible ansatz. As shown in the pa-
per [10], the dimension of the (Euclidean) space into which
the transformed system gets transported to, in the case of
power-law potentials can be arbitrarily preassigned only
when ET is performed, although CT is the basic transfor-
mation. On the other hand application of CT alone on the
non-powerlaw potentials make the situation more compli-
cated as the transformed equation cannot be put in the
standard Schrödinger equation form. It is therefore imper-
ative to apply ET in the case of non-powerlaw potential.
In this paper, we apply this transformation method to the
exactly solvable Hulthen problem, taking it as a typical
representative of non-powerlaw potential, which generates
a spectrum of different solved QSs, each equipped with
normalized exact analytic solutions and associated energy
eigenvalues. We discuss a procedure to regroup this set
of energy-dependent Sturmian QS to a normal QS. This
normal QS, called B-Quantum system (B-QS) is found to
be qualitatively similar but analytically different from the
Poschl-Teller potential.

Application of ET on a QS with powerlaw potential
generates a QS with a new powerlaw potential. Successive
application of ET on the generated QS will revert it back
to the parent QS. As an example, application of ET on



6 The European Physical Journal D

the coulomb system will generate the harmonic oscillator
(HO) system and application of ET on the HO system
will give us back the coulomb system. But in the case of
non-powerlaw potentials, ET may be applied repeatedly
by selecting the “working potential” differently from the
multi-term potential to generate a variety of new QSs ex-
cept for one which reverts back to the (immediate) parent
QS. To demonstrate this, we select one of the terms of the
newly generated exactly solved potentials of B-QS as the
working potential which specifies the form of transforma-
tion and then performing a subsequent transformation we
can generate another new set of Sturmian QSs. As there
is no standard procedure to regroup them to get a normal
QS, we have to use different QS-specific regrouping tech-
niques to produce a normal QS, which we call C-quantum
system (C-QS), having exact normalized eigenfunctions
and energy independent potential. Here we find the new
potential so obtained to be similar to the Morse potential.
The above procedure can be repeated to generate more
QSs.

In the present paper, our main objective is to generate
solvable potentials and to show their hierarchal connec-
tions, since exactly solvable potentials facilitate physical
applicabilities. Our intention of mentioning, besides other
potentials, the Poschl-Teller and the Morse-like potentials
as the potentials that can be obtained by ET starting
from exactly solvable non-powerlaw Hulthen potential is
to show that within the context of ET method they belong
to the same family.

The organization of the paper is as follows: in Sec-
tion 2 we give the formalism of the transformation method
modified to tackle multiterm potentials, and the normal-
izability of the generated eigenfunctions is discussed in
Section 3. In Section 4, application of the transformation
method to the Hulthen system along with generation of a
Sturmian type of QS is given. The method of regrouping
the set of energy-dependent QS’s to a normal QS is also
discussed in the same section. Second-order application of
the transformation method on the Hulthen QS is given in
Section 5 along with another regrouping method to make
normal QS from Sturmian QS’s.

2 Formalism

Unlike the powerlaw potentials, for non-powerlaw poten-
tials exact solutions are available only for s-waves. The ra-
dial part of the Schrödinger equation for an exactly solved
quantum system, with central non-powerlaw potential
V (r), henceforth called the A-system in DA−dimensional
Euclidean space [11] is (~ = 1 = 2m):

ψ′′A(r) +
DA − 1

r
ψ′A(r) +

[
EAn − VA(r)

]
ψA(r) = 0 (1)

where the normalized eigenfunctions ψA(r) and eigenen-
ergies EAn are known for the given VA(r). Prime denotes
the differentiation of the function with respect to its ar-
gument.

Applying the extended transformation to equation (1),
which comprises of

r→ gB(r) (2)

and

ψB(r) = f−1
B (r)ψA(gB(r)) (3)

leads to the following equation:

ψ′′B(r) +
(

d
dr

ln
f2
Bg

DA−1

g′B

)
ψ′B(r)

+

[(
d
dr

ln fB

)(
d
dr

ln
f ′Bg

DA−1
B

g′B

)

+ g′2B
(
EAn − VA(gB)

) ]
ψB(r) = 0 (4)

where gB(r) is the transformation function which is at
least three times differentiable and f−1

B is a modulated
amplitude. The dimension of the Euclidean space of the
transformed quantum system (henceforth called the B-
Sturmian Quantum systems (B-SQS)) can now be chosen
arbitrarily. Let it be denoted by DB. Then

d
dr

ln
f2
Bg

DA−1
B

g′B
=
DB − 1

r
,

which fixes fB(r) as a function of gB(r) and its derivative:

fB(r) = g
′ 12
B g
−DA−1

2
B r

DB−1
2 . (5)

In order to reduce equation (4) to the standard
Schrödinger equation form, the following plausible ansatz
have to be made, which are an integral part of the trans-
formation method:

g′2B(r)VA(gB(r)) = −K2
B (6)

g′2B(r)EAn = −VB(r) +EBN −K2
B (7)

where K2
B is a constant independent of r. Now VA(gB(r)),

known in terms of gB(r), specifies the form of the transfor-
mation function gB(r) through equation (6). Equation (7)
specifies the potential of the B-SQS once gB(r) becomes
known from relation (6). Furthermore equation (7) yields
the energy eigenvalue EBN .

The VA(gB(r)) in equation (6) is termed as the work-
ing potential which specifies gB(r) and is assumed to be
monoterm. In the case where the system A has a multi-
term potential,

VA(gB(r)) = V
(1)
A (gB) + V

(2)
A (gB) + · · ·+ V

(n)
A (gB) (8)

the working potential can be chosen in principle in (2n−1)
different ways. In fact, we can pick any number of terms of
the multiterm potential, the least being a single-term and
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designate it as the working potential V (w)(gB(r)). This
necessitates modifications of the ansatz (6) and (7) as:

g′2B(r)V (w)
A (gB(r)) = −K2

B (9)

g′2BE
A
n = −V (1)

B (r) +EBN −K2
B (10)

g′2B [VA(gB)− V (w)
A (gB)] = −V (2)

B (r). (11)

Invoking the ansatz (6) and (7) on equation (4), we get
the standard Schrödinger equation of the B-SQS:

ψ′′B(r) +
DB − 1

r
ψ′B(r) +

{
EBN −

(
V

(1)
B (r) + V

(2)
B (r)

)
−
[
− 1

2
{gB, r}+

(DA − 1)
2

(DA − 3)
2

g′2B
g2
B

− (DB − 1)
2

(DB − 3)
2

1
r2

]}
ψB(r) = 0 (12)

where

{gB, r} =
g′′′B (r)
g′B(r)

− 3
2
g′′2B (r)
g′2B(r)

is the Schwartzian derivative symbol. The final form of
the Schrödinger equation of the B-system established in
an Euclidean space of the chosen dimension DB is:

ψ′′B(r) +
DB − 1

r
ψ′B(r) +

[
EBN − VB(r)

]
ψB(r) = 0 (13)

where

VB(r) = V
(1)
B (r) + V

(2)
B (r) + V

(3)
B (r) (14)

and

V
(3)
B (r) =

(DA − 1)(DA − 3)
4

g′2B
g2
B

− (DB − 1)(DB − 3)
4

1
r2
− 1

2
{gB, r} (15)

whose eigenfunction is given by equations (3, 5):

ψB(r) = g
′− 1

2
B (r)g

DA−1
2

B r−
DB−1

2 ψA(gB(r)) (16)

and is known, since ψA(r) and gB(r) are known.
The set of energy eigenvalues EBN of the B-SQS is sim-

ply obtained by putting the r-independent overall factor
of V (1)

B (r) which would be a product of a function of the
form F (EBN ) and EAn , equal to constant c2B which is in
fact a characteristic constant of the B-SQS. This charac-
teristic constant c2B plays the same role as −Ze2 in case
of coulomb and mw2/2 in the case of the HO system. We
write

V
(1)
B (r) = F (EBN )EAn v(r) = c2Bv(r) (17)

where v(r) is the residual r-dependent factor of V (1)
B (r).

This yields the eigenvalues

EBN = F−1

(
c2B
EAn

)
(18)

and is known, as the eigenenergies EAn are known. In non-
powerlaw cases, in general, F (EBN ) cannot be factored out
from V

(1)
B (r). The generated QS would be a Sturmian QS.

In order to make a normal QS, we require a QS-specific
regrouping technique as mentioned below.

Here we may mention that the transformation proce-
dure based on a co-ordinate transformation is found to be
inadequate as it leads to problems regarding dimensional-
ity of the Euclidean space into which the transformed sys-
tem gets transported to. For example, when we start from
a 3-dimensional powerlaw system and apply co-ordinate
transformation, the dimension of the transformed quan-
tum system may be a fractional one leading to an (as yet)
unphysical quantum system. Moreover, the transformed
systems cannot be cast in the standard Schrödinger equa-
tion form when the potential is non-powerlaw. The diffi-
culty arising due to the dimensional mismatch can be over-
come by performing an extended transformation instead
of the simple co-ordinate transformation on the A-system.
This extended transformation also solves the problem en-
countered in applying the co-ordinate transformation to
the Schrödinger equation with a non-powerlaw potential.
The functional transformation component of the extended
transformation may be considered as a device for dimen-
sional reduction or dimensional extension of the generated
QSs.

3 Normalizability of generated eigenfunctions

A very useful property of the transformation method that
we would like to note is that the wavefunctions of the
generated quantum systems are almost always normaliz-
able. Normalizability condition for DB-dimensional B-QS
eigenfunction is:∫ ∞

0

ψ2
B(r)rDB−1dr =

1
|NB|2

= finite

using equations (2, 3, 5) we have

ψB(r) = g
′− 1

2
B g

DA−1
2

B r−
DB−1

2 ψA(gB(r)).

From equation (9) it reduces to

|NB|2
〈VA(r)〉
−EBN

= 1, (19)

since

g′2B =
−EBN

VA(gB(r))
·

Hence all the ψB(r) are normalizable for which EBN 6= 0.
For any real QS, 〈VA(r)〉 exists. As such, the wavefunc-
tions of the generated QS are always normalizable cor-
responding to non-null eigenenergies, when the wave-
functions of the parent QS are normalizable. Hence
the wavefunctions of the C-QS are also normalizable. The
above expressions show that it is a positive feature of the
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transformation procedure, that more often than not the
wavefunction of the newly generated QS is normalizable.
This implies that, unless g(r) is not badly behaved, so
far as its local and asymptotic properties are concerned,
the transformation method carries over the normalizabil-
ity property of the parent QS to the daughter QSs.

4 First-order transformation

We consider the Hulthen QS [13] as a typical representa-
tive of a QS with non-powerlaw potential which is exactly
solvable for l = 0 case only. Let it be denoted as our A-
system. The radial Schrödinger equation in DA-dimension
(DA = 3) is:

ψ′′A(r) +
2
r
ψ′A(r) +

(
−α2 − VA(r)

)
ψA(r) = 0 (20)

where

VA(r) = −β2 e−
r
a

1− e− ra (21)

is the Hulthen potential. The s-state energy eigenfunctions
are:

ψA(r) =
NA
r

exp
(
−αr
a

)
× 2F1

(
−n, 2α+ n, 2α+ 1; exp

(
− r
a

))
(22)

where α2 = −EAn > 0; β2 = V0 > 0, the normalization
constant is:

NA =
[2α(α+ n)Γ (2α+ n)Γ (2α+ n+ 1)]

1
2

α
1
2 [Γ (n+ 1)Γ (2α+ 1)]

(23)

and energy eigenvalues are,

EAn = −V0

(
β2 − n2

2nβ

)2

(24)

with β2 > n2, (n = 1, 2, 3, ...).
Now applying extended transformation on equa-

tion (20), we obtain the Schrödinger equation for the new
quantum system for DB = 3 as,

ψ′′B(r) +
2
r
ψ′B(r) +

[1
2
{gB, r}

+ g′2B
(
−α2 − VA(gB)

) ]
ψB(r) = 0. (25)

Ansatz (6) and (7) give

g′2B
e−

gB
a(

1− e−
gB
a

) =
K2
B

β2
(26)

−g′2Bα2 = −V (1)
B (r) +EBN −K2

B (27)

V
(3)
B (r) = −1

2
{gB, r} (28)

where K2
B is a constant independent of r. The functional

form of gB(r) obtained from equation (26) by integra-
tion is:

gB(r) = 2a ln sec ηr (29)

where

η =
1
2a

√
K2
B

β2
· (30)

The integration constant is put equal to zero which at-
tributes the local property gB(0) = 0. This local property
is desirable from the point of view of normalizability of
the wave function of the generated QS.

Now equations (27, 29) lead to

V
(1)
B (r) = 4a2η2α2 tan2 ηr. (31)

Using equations (30, 31) can be written as

V
(1)
B (r) = K2

B

(
β2 − n2

2nβ

)2

tan2 ηr

= c2B tan2 ηr, (32)

where cB is the characteristic constant for the B-SQS [5]
and is

c2B = K2
B

(
β2 − n2

2nβ

)2

· (33)

The multiterm potential of the B-SQS, given by equa-
tion (14) becomes

VB(r) = 3η2 csc2 2ηr − η2 sec2 ηr + c2B tan2 ηr (34)

which specifies a Sturmian QS. For our purpose, without
loss of generality we take for convenience a scale factor
a = 1. Since β was originally a n-independent parame-
ter, equation (30) shows that KB or equivalently η has
a dependence on the positive integer n. Furthermore by
equation (27) EBN = K2

B as gB(r) is r-dependent and α
is a constant. The expression (33) is utilized to find the
energy eigenvalues of the Sturmian B-SQS, and is,

EBN = c2B

(
2nβ

β2 − n2

)2

· (35)

Invoking the ansatz (26–28) in equation (20), the radial
Schrödinger equation for the B-SQS takes the form:

ψ′′B(r) +
2
r
ψ′B(r) + (EBN − VB(r))ψB(r) = 0 (36)

where the exact eigenfunction ψB(r) is given by equa-
tion (16) and is,

ψB(r) =
NB
r

cos2α ηr(cot ηr)
1
2

× 2F1(−n, 2α+ n, 2α+ 1; cos2 ηr)
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where

NB =
Γ (2α+ n)
Γ (2α+ 1)

(
2η(α+ n)(2α+ n)
Γ (n)Γ (n+ 1)

) 1
2

(37)

VB(r) is n-dependent, i.e., Sturmian type of potential as
α is the energy eigenvalue of the A-system. This special
type of energy-dependent potential is equipped with only a
single normalized eigenstate i.e., n ceases to be a quantum
number. It rather behaves like a system index enumerating
different QSs. The B-SQS actually comprises of a finite set
of quantum systems. The number of such systems depends
on the magnitude of V0 as we require that 0 < n2 < V0.

The B-SQS can be converted to a normal quantum
system by reversing the roles of α and β. We have the
A-system relation β2 = n(2α+ n) which prohibits α and
β both to be n-independent parameters simultaneously.
As such, in the B-SQS we take α to be n-independent
which makes β n-dependent automatically. To make η n-
independent we further take KB = 2βs where a scale
factor s is introduced. This makes the potential VB(r)
n-independent and is:

VB(r) = s2[3 csc2 2sr− sec2 sr + 4α2 tan2 sr] (38)

and the quantized energy eigenvalues of this normal quan-
tum system (B-QS) becomes,

EBn = 4s2n(2α+ n). (39)

It may be mentioned that E − V (r) for the Poschl-
Teller [14] potential is,[

2V0n(n+ χ+ λ) +
1
2
V0(χ+ λ)2

]
− 1

2
V0

[
χ(χ− 1)
sin2 αr

+
λ′(λ′ − 1)

cos2 αr

]
which is exactly same as EBn − VB(r) except that for the
B-QS χ = 3/2, λ→ λ′ = λ+ 2.

So the generated B-QS belongs to the family of the
Poschl-Teller potential.

5 Second-order transformation

Application of the extended transformation on the B-SQS
comprising of equations (34, 36) we generate another new
Sturmian quantum system, say, the C-SQS given by:

ψ′′c (r) +
2
r
ψ′c(r) +

(1
2
{gc, r}

+ g′2c
(
EBn − VB(gc)

) )
ψc(r) = 0. (40)

The exact energy eigenfunction is

ψc(r) =
1
r
gc(r)g′−1/2

c ψB(gc(r)) (41)

and is completely specified once gc(r) is known. The B-
SQS potential is a multiterm potential and we have a
number of choices to select the working potential. As a
specific choice we consider −η2 sec2 ηgc(r) and the set of
ansatz required to bring equation (40) into the standard
Schrödinger equation form are now,

g′2c V
(w)
B (gc) = −K2

c (42)

V
(w)
B (gc) = −η2 sec2 gc(r) (43)

1
2
{gc, r}+ g′2c (EBn − 3η2 csc2 2ηgc

− 4η2α2 tan2 ηgc) = Ecn −K2
c − Vc(r). (44)

From equations (42–44) the new Schrödinger equation for
the C-SQS can be written as,

ψ′′c (r) +
2
r
ψ′c(r) + (Ecn − Vc(r))ψc(r) = 0 (45)

where Ecn is the energy eigenvalue and Vc(r) is the C-SQS
potential.

From equation (42) we calculate gc(r) by integration
which is

gc(r) =
1
η

arccos(sechKcr)

=
1
η

arcsin(tanhKcr) (46)

with the local property, gc(0) = 0.
This yields the energy eigenvalues, the n-dependent

potential and the normalized energy eigenfunctions of the
C-SQS as:

Ecn = 4K2
cn(2α+ n)− K2

c

4
(47)

Vc(r) = K2
c

({
4(α+ n)2 − 1

4

}
tanh2Kcr

+
3
4

(sinhKcr)−2

)
(48)

and

ψc(r) =
Nc
r

1

(tanhKcr)
1
2

sech2αKcr

× 2F1(−n, 2α+ n, 2α+ 1; sech2Kcr). (49)

respectively and the normalization constant is

Nc =
2Γ (2α+ n)

Γ (2α+ 1)Γ (n+ 1)
{αn(2α+ n)} 1

2 . (50)

To convert the C-SQS into a normal quantum system we
use the following ansatz:

(α + n)2 = c2c (51)
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c2c being the characteristic constant of the C-QS, which
may take both positive and negative values.

The equation (51) gives

α = ±cc − n, c2c > 0

= ±icc − n, c2c < 0. (52)

The normalizability of the C-QS wavefunction ψc(r) puts
restriction on the possible range of values for cc. In this
case, the only possible values of α and c2c which ensure the
normalizability of ψc(r) is found to be α > 0 and c2c > 0,
implying cc > n, n = 1, 2, 3, ...

The C-QS is now characterized by the following n-
independent potential, energy eigenvalues

Vc(r) = K2
c

({
4c2c −

1
4

}
tanh2Kcr +

3
4

(sinhKcr)−2

)
(53)

Ecn = −K2
c

[
4(cc − n)2 −

(
4c2c −

1
4

)]
(54)

and

∆Ecn = 8K2
c [cc − (n+ 1/2)].

This energy level spacing implies the more stringent in-
equality cc > n+ 1/2, n = 1, 2, 3, ...

The corresponding normalized energy eigenfunctions
are

ψc(r) =
Nc
r

1
(tanhKcr)

1
2

sech2(cc−n)Kcr

× 2F1(−n, 2cc − n, 2cc − 2n+ 1; sech2Kcr) (55)

where

Nc =
2Γ (2cc − n)

Γ (2cc − 2n+ 1)Γ (n+ 1)
(n(cc − n)(2cc − n))

1
2 .

(56)

This potential of the normal quantum system is similar to
the Morse potential [15]. The generated C-QS is similar
to the Morse-QS except that C-QS potential has a much
steeper repulsive core. They form isospectral QSs modulo
a constant energy difference.

6 Discussion

This paper is concerned with the generation of new com-
pletely solved quantum bound state systems in the non-
relativistic regime, by a transformation method. Here the
Hulthen QS (A-system), whose potential is non-powerlaw
and whose analytic bound state solutions for s-state only
are available, is taken as a typical representative of QSs
with non-powerlaw potentials. The first-order application
of the transformation method to the Hulthen QS leads
to a non-factorizable transformation function gB(r), as
discussed in Section 4. Non-factorizable transformation

functions appear whenever the transformation method is
applied on a QS with non-powerlaw potential. This fur-
nishes the special type of energy-dependent non-powerlaw
potential (Sturmian). These energy-dependent potentials,
unlike the usual QSs are always equipped with only a sin-
gle normalized state, as varying n we do not get excited
states, instead we get different QSs. Thus n is no longer
a quantum number. It plays the role of a cardinal num-
ber parameter to enumerate different QSs. We discuss a
method that regroups the set of n-dependent QSs and
resurrects n as a quantum number with (nmax − 1) ex-
cited states, where n2

max ≤ V0, thus reproducing a nor-
mal QS with n-independent potential. It is evident that
the Extended Transformation may be applied any number
of times successively to generate new quantum systems.
But the important point to be noted is that to generate
the C-system starting from the A-system we have to pass
through the B-system. Extended Transformations there-
fore do not form a transformation group.

The first-order application of the transformation
method to the Hulthen QS produces a potential similar
to the Poschl-Teller potential with finite number of eigen-
states. The shape of the potential of this B-QS changes
with the value of α, which is symmetrical about sx = π/4
for α > 0.25 and hole becomes oblique with its minimum
shifting towards smaller x values as α value increases. For
α = 0.25 the potential hole becomes symmetrical about
sx = π/2.

The Poschl-Teller potential also behaves in the simi-
lar way, i.e., its potential is symmetrical about sx = π/4
for χ = λ. If χ > λ, the hole becomes oblique with its
minimum shifting to larger x values. But for 1 < χ < λ,
the minimum shifts to the other side as our B-system po-
tential. So applying the transformation method to the
Hulthen problem we obtain a potential similar to the
Poschl-Teller type with composite parameter α.

The second-order application of the transformation
method to the Hulthen system produces C-QS whose
potential resembles that of the Morse potential with a
steeper potential surface.

From the multiterm potential of the B-system, if we
choose 3η2 csc2 2ηgc(r) as the working potential we can
generate another new system with normalized energy
eigenfunctions and energy eigenvalues. On the other hand
if we choose 4η2α2 tan2 ηgc(r) as the working potential the
functional form of gc(r) is (1/η) sec−1(exp(Kr)), where
K =

√
Ecn/2α. Using this functional form of gc(r) from

equation (58) we can go back to the original Hulthen sys-
tem by reverting back the n-dependence to α, when β
becomes a n-independent constant i.e., undoing the re-
grouping procedure. In a similar way, taking K2

c (4c2c −
1/4)sech2KcgD as the working potential we find the func-
tional form gD(r) to be gD(r) = (1/Kc) sinh−1(tan ρr),
where ρ = ±

√
E/(4c2c − 1/4) and using this functional

form of gD(r) we can go back to the B-QS by substituting
the value of the characteristic constant cc and keeping α
n-independent constant. This shows that although we can
generate different QSs by choosing different terms of the
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multiterm potential as the working potential, out of these,
one of the choices will revert it back to the parent QS.

Furthermore we emphasize the fact that the transfor-
mation method can be applied, in principle, to generate
innumerable exactly solved non-relativistic QSs with non-
powerlaw potentials. A subset of the QSs so generated
would remain Sturmian QSs, as there is no general proce-
dure that can be applied to render them normal QS. We
may mention that the ET method of generation of solvable
potential cannot be applied to a QS when the potential
is either infinite and/or zero. Such a situation occurs for
instance, in case of the quantum mechanical problem of
a particle in a box with impenetrable walls. SUSY quan-
tum mechanics can be used in such a situation to produce
other isospectral potentials. The methodology involved in
ET and SUSY methods are entirely different. From this
point of view they may be considered complementary to
each other. However, ET can be applied to SUSY quantum
mechanical problems also to obtain other solvable SUSY
QSs. Work is presently going on in this direction and the
results will be published elsewhere.
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